MID-TERM EXAM

ISI BANGALORE

February 2017

B Math Algebra II

100 Points

Notes.

- (a) Justify all your steps.
- (b) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers, $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.
- (c) By default, F denotes a field.
- 1. [16 points] Find a basis of the solution space for the system $A\vec{x} = \vec{0}$ where A and \vec{x} are given by

											$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
A =	$\begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$	1 0 0	$\begin{array}{c} 3\\ 0\\ 0\end{array}$	0 1 0	5 8 0	0 0 1	7 2 4	$\begin{pmatrix} 9\\6\\3 \end{pmatrix}$	\vec{x}	=	$egin{array}{c} x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_6 \ x_7 \end{array}$
											1. 1.81

You must briefly justify (either by quoting a suitable result or by explicit calculation) why the vectors you produce form a basis of the solution space.

2. [16 points] Let v_1, \ldots, v_n be vectors in \mathbb{Q}^m having all integer entries. Let p be a prime number and let $\overline{v_1}, \ldots, \overline{v_n}$ denote the vectors in \mathbb{F}_p^m obtained by reducing the entries of v_i modulo p. If $\overline{v_1}, \ldots, \overline{v_n}$ span \mathbb{F}_p^m prove that v_1, \ldots, v_n span \mathbb{Q}^m .

3. [20 points] Let V, V' be vector spaces over a field F and let $W \subset V$ and $W' \subset V'$ be subspaces. Prove that there exists an onto linear map $T: V \to V'$ with T(W) = W' if and only if the following two inequalities hold:

 $\dim(W) \ge \dim(W'), \qquad \operatorname{codim}_V(W) \ge \operatorname{codim}_{V'}(W').$

- 4. [16 points] Let W_1, \ldots, W_k be subspaces of a vector space V.
 - (i) Define what it means for W_1, \ldots, W_k to be independent subspaces in V.
 - (ii) If

 $W_1 \cap W_2 = (0), \quad (W_1 + W_2) \cap W_3 = (0), \quad \dots, \quad (W_1 + W_2 + \dots + W_{k-1}) \cap W_k = (0),$

then prove that W_1, \ldots, W_k are independent.

- 5. [16 points]
 - (i) Let X, Y be matrices of size $m \times r$ and $r \times n$ respectively. Prove that the rank of XY is at most r.
 - (ii) Let A be an $m \times n$ matrix of rank r. Prove that there exist matrices X, Y of size $m \times r$ and $r \times n$ respectively such that A = XY.

6. [16 points] Let V denote the vector space of all polynomials of degree at most 3 in a variable x over \mathbb{R} . Let $\Delta: V \to V$ be given by $\Delta(f(x)) := f(x+1) - f(x)$.

- (i) Verify that Δ is a linear operator.
- (ii) Write down the matrix of Δ for the ordered basis of V given by $1, x, x^2, x^3$. (iii) Write down the matrix of Δ for the ordered basis of V given by

$$\begin{pmatrix} x \\ 0 \end{pmatrix} = 1, \quad \begin{pmatrix} x \\ 1 \end{pmatrix} = x, \quad \begin{pmatrix} x \\ 2 \end{pmatrix} = x(x-1)/2, \quad \begin{pmatrix} x \\ 3 \end{pmatrix} = x(x-1)(x-2)/6.$$